Synthesis and Characterisation of Nona-osmium Carbonyl Clusters; Crystal and Molecular Structure of [(Ph₃P)₂N] [Os₉H(CO)₂₄]

Angelo J. Amoroso, Brian F. G. Johnson, Jack Lewis,* Paul R. Raithby and Wing Tak Wong University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

The anion $[Os_9H(CO)_{24}]^-$, **2** has been isolated in moderate yield by the vacuum pyrolysis of $[Os_3(CO)_{10}(NCMe)_2]$, and has been shown by a single crystal X-ray structure analysis to contain the previously unobserved tricapped octahedral Os_9 metal core.

Extensive studies have been carried out on the structure and reactivity of high nuclearity osmium cluster compounds.¹⁻⁴ However, nona-osmium carbonyl clusters are extremely rare. The only report⁵ of Os_9 species is the isolation of

Fig. 1. The molecular structure of the $[Os_9H(CO)_{24}]^- 2$ anion showing the atom numbering scheme. Principal bond distances (Å): Os(1)–Os(2), 2.815(3); Os(1)–Os(3), 2.892(3); Os(1)–Os(4), 2.738(3); Os(1)–Os(6), 2.816(3); Os(1)–Os(8), 2.886(3): Os(1)–Os(9), 2.735(3); Os(2)–Os(3), 2.831(3); Os(2)–Os(5), 2.924(3); Os(2)–Os(6), 2.942(3); Os(2)–Os(9), 2.938(3); Os(3)–Os(5), 2.822(3); Os(3)–Os(7), 2.739(3); Os(3)–Os(8), 2.874(3); Os(3)–Os(9), 2.745(3); Os(4)–Os(6), 2.946(3); Os(5)–Os(7), 2.936(3); Os(5)–Os(8), 2.813(3); Os(6)–Os(8), 2.823(3); Os(7)–Os(8), 2.741(3).

 $[Os_9(CO)_{21}\{CHC(R)CH\}]^-$ (R = Me or Et) from the thermolysis of $[Os_3(CO)_{12}]$ in isobutyl alcohol or 2-methylbutan-1-ol, in very low yield (less than 2%).

We now report a synthetic route to a series of new nona-osmium species $[Os_9(H)_2(CO)_{24}]$ 1, $[Os_9H(CO)_{24}]^-$ 2 $[Os_9(CO)_{24}]^{2-}$ Vacuum and 3. pyrolysis of $[Os_3(CO)_{10}(NCMe)_2]$ at 170 °C for 16h gives a dark brown microcrystalline solid. The solid mixture of clusters is first extracted with CH_2Cl_2 to remove $[Os_5(CO)_{16}]$ (3%), $[Os_6(CO)_{18}]$ (18%), $[Os_7(CO)_{21}]$ (8%) and $[Os_8(CO)_{23}]$ (trace). The residue is then extracted with acetone to give a dark brown solution and a yellow powder of $[Os_3(CO)_{12}]$ (22%). Separation of the brown solution by TLC on silica (eluent; acetone-hexane 1:1) gives the new $[Os_9H(CO)_{24}]^- 2$ mono-anion ($R_{\rm f} \sim 0.6$) in 20% yield. The stoichiometry of 2 was initially established by FAB MS[†] and ¹H NMR and has been confirmed by a single crystal X-ray structure analysis of the $[(Ph_3P)_2N]^+$ salt.[‡] The molecular structure of **2**, together

[†] Spectroscopic data for 1: IR v(CO)/cm⁻¹ (CH₂Cl₂) 2096w, 2087m, 2077s, 2070sh, 2042w and 2026w. For the $[(Ph_3P)_2N]^+$ salt of 2: IR v(CO)/cm⁻¹ (CH₂Cl₂) 2057s, 2044s, 2020m, 2001m and 1990w sh; FAB MS M⁺(obs.) *m*/z 2385 (calc.) 2385; ¹H NMR (CD₂Cl₂ δ –9.2 (s, 1H, MH) and 7.62 {m, 30H, $[(Ph_3P)_2N]^+$ }. For the $[(Ph_3P)_2N]^+$ salt of 3: IR v(CO)/cm⁻¹ (CH₂Cl₂) 2035s, 2023s, 1998m, 1975m and 1965w, sh; FAB MS M⁺ (obs.) *m*/z 2384 (calc.) 2384.

[‡] Crystal data for **2**: C₆₀H₃₁NO₂₄P₂Os₉, M = 2923.6, monoclinic, space group P2₁/n (non-standard setting of P2₁/c No. 14), a = 12.001(2), b = 31.339(10), c = 17.602(3) Å, $\beta = 90.57(2)^{\circ}$, U = 6620(3) Å³, Z = 4, $D_c = 2.933$ g cm⁻³, F(000) = 5216, Mo-Kα radiation, $\lambda = 0.71069$ Å, μ (Mo-Kα) = 173.52 cm⁻¹, 3770 observed diffractometer data [$F > 3\sigma(F)$]. Structure solved by direct methods and Fourier difference techniques, refined by full-matrix least-squares analysis (Os and P anisotropic) to R = 0.069, $R_w = 0.063$. Atomic coordinates, bond lengths and angles, and thermal parameters for both compounds **2** and **3** have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 2 $^{13}C\{^{1}H\}$ NMR spectrum of 50% ^{13}C enriched $[(Ph_3P)_2N]^+[Os_9H(CO)_{24}]^-$ (CD_2Cl_2, 298 K)

with some important bond parameters is shown in Fig. 1. The metal core can be described as a tricapped octahedron and may be viewed as being derived from the Os_{10} framework in $[Os_{10}H_4(CO)_{24}]^{2-}$ by the removal of one cap.⁶ The capping Os(CO)₃ groups are asymmetric with one long and two short bonds [2.940(10) and 2.739(5) Å] to the central octahedron so that the atoms Os(4), Os(7) and Os(9) lie below the plane defined by Os(1), Os(3) and Os(8) with average deviation 0.30 A from the plane. This feature is not observed in $[Os_{10}H_4(CO)_{24}]^{2-}$ where the four Os_6 frameworks, defining the tetrahedron faces, are planar.⁶ The mono-anion 2 exhibits an approximate $C_{3\nu}$ symmetry. All carbonyl ligands are terminally bonded and essentially linear. The position of the hydride could not be determined directly by X-ray analysis, but potential energy calculations⁷ suggest that the hydride atom μ_3 -bridges Os(1), Os(3), Os(8) face. At 25 °C, the ¹³C{¹H} NMR spectrum shows five resonances in the region δ 205-165 with intensity ratio 1:1:2:3:1 which is consistent with the solid state structure assuming the turnstile rotation of the carbonyls on Os(2), Os(5) and Os(6) is restricted, see Fig. 2.

Reaction of 2 with DBU (1,8-diazabicyclo[5.4.0]undec-7ene) gives the dianion 3 in quantitative yield which can be isolated as $[(Ph_3P)_2N]^+$, $[Ph_4P]^+$ or $[Bu_4P]^+$ salts. A preliminary X-ray analysis§ of $[Ph_4P]^+$ salt of 3 reveals an identical metal core to that found in 2. However, the poor crystal quality and severe absorption effect of the crystal precluded the determination of ligand positions. Protonation of 3 with CF_3CO_2H in CH_2Cl_2 gives 2 and further protonation can be achieved by HBF₄ to give 1 which dissociates easily back to 2 in CH_2Cl_2 .

Both 2 and 3 contain 122 valence electrons and the observed structures represent the first examples of the simple tricapped octahedral geometry of M_9 -cluster. In the light of electron counting and structural relation of transition metal clusters, they fit in the capping principle based on the Wade⁸ and Mingos⁹ approaches, see Scheme 1.

We thank the Royal Commission for the Exhibition of 1851 and the Committee of Vice-Chancellors and Principals of the

Scheme 1 The relationship between structure and the total polyhedral electron count for osmium cluster species

Universities of United Kingdom (W. T. W.) and the SERC (A. J. A.) for financial support.

Received, 13th March 1991; Com. 1/01182K

References

- 1 M. D. Vargas and J. N. Nicholls, *Adv. Inorg. Chem. Radiochem.*, 1986, **30**, 123.
- 2 L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin and H. R. Powell, J. Chem. Soc., Chem. Commun., 1990, 110.
- 3 E. Charalambous, L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin and H. R. Powell, J. Chem. Soc., Chem. Commun., 1990, 688.
- 4 A. J. Amoroso, L. H. Gade, B. F. G. Johnson, J. Lewis, P. R. Raithby and W. T. Wong, *Angew. Chem.*, *Int. Ed. Engl.*, 1991, **30**, 107.
- 5 B. F. G. Johnson, J. Lewis, M. McPartlin, W. J. H. Nelson, P. R. Raithby, A. Sironi and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1983, 1476.
- 6 D. Braga, B. F. G. Johnson, J. Lewis, M. McPartlin, W. J. H. Nelson and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1983, 241.
- 7 A. G. Orpen, J. Chem. Soc., Dalton Trans., 1980, 2509.
- 8 K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1.
- 9 D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1983, 706.

[§] *Crystal data* for **3**: C₇₂H₄₀O₂₄P₂Os₉, M = 3062.9, monoclinic, space group $P2_1/n$ (non-standard setting of $P2_1/c$ No. 14), a = 13.168(9), b = 20.473(5), c = 27.033(9) Å, $\beta = 94.46(4)^\circ$, U = 7265.7 Å³, Z = 4,2351 observed diffractometer data $[F > 3\sigma(F)]$ with current *R* factor 0.198.